
Wed, Feb 22, 1995

Data request support for local stations/IRMs uses “ptr-type” routines to
“compile” a request for data specified via a listype#, where the request in this
context is comprised of an array of “idents.” A ptr-type routine scans the array
of idents and produces an array of “internal ptrs” that represents a kind of
“object code” for the original request. This is done so that “read-type” routines
can generate the reply data most efficiently, especially for the case of requests
for periodic replies.

To illustrate this simply, consider a request for readings of analog channels.
The listype# for analog readings is 0. The idents used for such a request are
channel numbers, each given as a two-word structure, the first word being a
node# and the second word a channel#. The analog data pool of a local
station is organized as a simple array of records, one field of such records being
used for the reading word value. The format of internal ptr used in this case is
a pointer to the given channel;’s reading field in its analog data pool record.
The update logic, then, which utilizes a read-type routine, is a simple loop that
gets an internal ptr from the array and dereferences it to obtain the reading
value result, and loops over the number of idents—the same as the number of
internal ptrs—presented in the original request.

For the Classic protocol, as used by local or page applications, a data request is
made specifying an array of listypes and an array of idents. If more than one
listype is used, each must be associated with the same ident types, as the same
ident array is “compiled” into internal ptrs for each listype given in the
request. Sometime after the request has been made, the application invokes
Collect to retrieve the results. Typically, an application does this on the next
operating cycle. If the data should not yet be available, because the request
required data to be retrieved from another node, then the Collect routine waits
for the external data to arrive. There is a timeout for this that is normally 50
ms after the current cycle.

There are only a few error return codes that Collect returns, as follows:
0 No errors.
1 Invalid list#. Maybe the request was really strange.
2 Data not yet available. Collect called on same cycle request was

made.
3 Internal corruption of request context.
4 Bus error detected in collecting answers.
5 Too few bytes received from an external node
6 Too many bytes received from an external node
7 Answers tardy, but have received answers at least once from ext

node.
8 Answers tardy. Nothing ever received from ext node.

Note that the only nonzero error codes normally seen are 4, 7, 8. Ask for
memory data using an address ident that is invalid for that station’s
hardware, and an error 4 is returned. Ask for data from an invalid node# or a
valid, but non-operating node#, and an 8 will be returned. Ask for data from a



intermittant 7 errors will appear. During a periodic request activity, if that
node drops off the network, solid 7 errors will occur.

The Ptr-type routines that build internal ptrs try to do so without error. If a
system table does not exist, for example, the request cannot reasonably be
supported by this node, so zeros are returned for the answer to the request. The
ptr-type routine and the corresponding read-type routine for the given listype
work together to produce the answer results. The internal ptr is the output of
the ptr-type routine and the input of the read-type routine. There is no
mechanism for returning an error code in the call to the data request
procedure. The only error return that a read-type routine can return to Collect
is a bus error indicator, which causes Collect to return error code 4. One might
say that the attitude here is that a faulty request results in answer data of
zeros, by definition.

In writing a ptr-type routine, consideration must be given to what is needed by
the corresponding read-type routine to define the answer data. In the case of
an ident that is from an external node, an external answer ptr form is used
that is usually a ptr to the proper place in that external node’s dedicated reply
buffer for that request, which is allocated as part of the request block data
structure for that request. In order to indicate that case of an internal ptr
value, the sign bit is set in the internal ptr, which is a 32-bit longword. This
means that typically one will find in a read-type routine corresponding logic
that detects the presence of the sign bit to signal an external ptr case, removes
the sign bit, then uses the low 31 bits as a ptr into the proper place in the
external node’s reply buffer in the request block. (All dynamic memory, and
hence all request blocks, reside at memory addresses below 1 MB, so nothing is
lost by commandeering bit# 31 for this purpose.

The case of a memory address ident is special. In this case, the user specifies an
arbitrary 32-bit memory address from which data is to be retrieved. So we
must use all 32 bits of the internal ptr for the given memory address. So in this
case, the ptr-type routine does NOT set bit# 31 of the internal ptr to mark the
external answer ptr case. And the read-type routine merely copies memory
data from the address given. If that address happens to point to the external
answer buffer, memory is copied from that buffer. If it happens to point to a
field in a system table entry, memory is copied from there. In either case,
memory is copied to produce the answers. It does not matter from whence it is
copied.


